Serveur d'exploration sur les mitochondries dans l'oxydoréduction chez les plantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptome Analysis of Solanum Tuberosum Genotype RH89-039-16 in Response to Chitosan.

Identifieur interne : 000001 ( Main/Exploration ); précédent : 000000; suivant : 000002

Transcriptome Analysis of Solanum Tuberosum Genotype RH89-039-16 in Response to Chitosan.

Auteurs : Philipp Lemke [Allemagne] ; Bruno M. Moerschbacher [Allemagne] ; Ratna Singh [Allemagne]

Source :

RBID : pubmed:32903855

Abstract

Potato (Solanum tuberosum L.) is the worldwide most important nongrain crop after wheat, rice, and maize. The autotetraploidy of the modern commercial potato makes breeding of new resistant and high-yielding cultivars challenging due to complicated and time-consuming identification and selection processes of desired crop features. On the other hand, plant protection of existing cultivars using conventional synthetic pesticides is increasingly restricted due to safety issues for both consumers and the environment. Chitosan is known to display antimicrobial activity against a broad range of plant pathogens and shows the ability to trigger resistance in plants by elicitation of defense responses. As chitosan is a renewable, biodegradable and nontoxic compound, it is considered as a promising next-generation plant-protecting agent. However, the molecular and cellular modes of action of chitosan treatment are not yet understood. In this study, transcriptional changes in chitosan-treated potato leaves were investigated via RNA sequencing. Leaves treated with a well-defined chitosan polymer at low concentration were harvested 2 and 5 h after treatment and their expression profile was compared against water-treated control plants. We observed 32 differentially expressed genes (fold change ≥ 1; p-value ≤ 0.05) 2 h after treatment and 83 differentially expressed genes 5 h after treatment. Enrichment analysis mainly revealed gene modulation associated with electron transfer chains in chloroplasts and mitochondria, accompanied by the upregulation of only a very limited number of genes directly related to defense. As chitosan positively influences plant growth, yield, and resistance, we conclude that activation of electron transfer might result in the crosstalk of different organelles via redox signals to activate immune responses in preparation for pathogen attack, concomitantly resulting in a generally improved metabolic state, fostering plant growth and development. This conclusion is supported by the rapid and transient production of reactive oxygen species in a typical oxidative burst in the potato leaves upon chitosan treatment. This study furthers our knowledge on the mode of action of chitosan as a plant-protecting agent, as a prerequisite for improving its ability to replace or reduce the use of less environmentally friendly agro-chemicals.

DOI: 10.3389/fpls.2020.01193
PubMed: 32903855
PubMed Central: PMC7438930


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptome Analysis of
<i>Solanum Tuberosum</i>
Genotype RH89-039-16 in Response to Chitosan.</title>
<author>
<name sortKey="Lemke, Philipp" sort="Lemke, Philipp" uniqKey="Lemke P" first="Philipp" last="Lemke">Philipp Lemke</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute for Biology and Biotechnology of Plants, University of Münster, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moerschbacher, Bruno M" sort="Moerschbacher, Bruno M" uniqKey="Moerschbacher B" first="Bruno M" last="Moerschbacher">Bruno M. Moerschbacher</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute for Biology and Biotechnology of Plants, University of Münster, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Singh, Ratna" sort="Singh, Ratna" uniqKey="Singh R" first="Ratna" last="Singh">Ratna Singh</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute for Biology and Biotechnology of Plants, University of Münster, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32903855</idno>
<idno type="pmid">32903855</idno>
<idno type="doi">10.3389/fpls.2020.01193</idno>
<idno type="pmc">PMC7438930</idno>
<idno type="wicri:Area/Main/Corpus">000008</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000008</idno>
<idno type="wicri:Area/Main/Curation">000008</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000008</idno>
<idno type="wicri:Area/Main/Exploration">000008</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptome Analysis of
<i>Solanum Tuberosum</i>
Genotype RH89-039-16 in Response to Chitosan.</title>
<author>
<name sortKey="Lemke, Philipp" sort="Lemke, Philipp" uniqKey="Lemke P" first="Philipp" last="Lemke">Philipp Lemke</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute for Biology and Biotechnology of Plants, University of Münster, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moerschbacher, Bruno M" sort="Moerschbacher, Bruno M" uniqKey="Moerschbacher B" first="Bruno M" last="Moerschbacher">Bruno M. Moerschbacher</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute for Biology and Biotechnology of Plants, University of Münster, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Singh, Ratna" sort="Singh, Ratna" uniqKey="Singh R" first="Ratna" last="Singh">Ratna Singh</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute for Biology and Biotechnology of Plants, University of Münster, Münster</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Rhénanie-du-Nord-Westphalie</region>
<region type="district" nuts="2">District de Münster</region>
<settlement type="city">Münster</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Potato (
<i>Solanum tuberosum</i>
L.) is the worldwide most important nongrain crop after wheat, rice, and maize. The autotetraploidy of the modern commercial potato makes breeding of new resistant and high-yielding cultivars challenging due to complicated and time-consuming identification and selection processes of desired crop features. On the other hand, plant protection of existing cultivars using conventional synthetic pesticides is increasingly restricted due to safety issues for both consumers and the environment. Chitosan is known to display antimicrobial activity against a broad range of plant pathogens and shows the ability to trigger resistance in plants by elicitation of defense responses. As chitosan is a renewable, biodegradable and nontoxic compound, it is considered as a promising next-generation plant-protecting agent. However, the molecular and cellular modes of action of chitosan treatment are not yet understood. In this study, transcriptional changes in chitosan-treated potato leaves were investigated
<i>via</i>
RNA sequencing. Leaves treated with a well-defined chitosan polymer at low concentration were harvested 2 and 5 h after treatment and their expression profile was compared against water-treated control plants. We observed 32 differentially expressed genes (fold change ≥ 1; p-value ≤ 0.05) 2 h after treatment and 83 differentially expressed genes 5 h after treatment. Enrichment analysis mainly revealed gene modulation associated with electron transfer chains in chloroplasts and mitochondria, accompanied by the upregulation of only a very limited number of genes directly related to defense. As chitosan positively influences plant growth, yield, and resistance, we conclude that activation of electron transfer might result in the crosstalk of different organelles
<i>via</i>
redox signals to activate immune responses in preparation for pathogen attack, concomitantly resulting in a generally improved metabolic state, fostering plant growth and development. This conclusion is supported by the rapid and transient production of reactive oxygen species in a typical oxidative burst in the potato leaves upon chitosan treatment. This study furthers our knowledge on the mode of action of chitosan as a plant-protecting agent, as a prerequisite for improving its ability to replace or reduce the use of less environmentally friendly agro-chemicals.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32903855</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptome Analysis of
<i>Solanum Tuberosum</i>
Genotype RH89-039-16 in Response to Chitosan.</ArticleTitle>
<Pagination>
<MedlinePgn>1193</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2020.01193</ELocationID>
<Abstract>
<AbstractText>Potato (
<i>Solanum tuberosum</i>
L.) is the worldwide most important nongrain crop after wheat, rice, and maize. The autotetraploidy of the modern commercial potato makes breeding of new resistant and high-yielding cultivars challenging due to complicated and time-consuming identification and selection processes of desired crop features. On the other hand, plant protection of existing cultivars using conventional synthetic pesticides is increasingly restricted due to safety issues for both consumers and the environment. Chitosan is known to display antimicrobial activity against a broad range of plant pathogens and shows the ability to trigger resistance in plants by elicitation of defense responses. As chitosan is a renewable, biodegradable and nontoxic compound, it is considered as a promising next-generation plant-protecting agent. However, the molecular and cellular modes of action of chitosan treatment are not yet understood. In this study, transcriptional changes in chitosan-treated potato leaves were investigated
<i>via</i>
RNA sequencing. Leaves treated with a well-defined chitosan polymer at low concentration were harvested 2 and 5 h after treatment and their expression profile was compared against water-treated control plants. We observed 32 differentially expressed genes (fold change ≥ 1; p-value ≤ 0.05) 2 h after treatment and 83 differentially expressed genes 5 h after treatment. Enrichment analysis mainly revealed gene modulation associated with electron transfer chains in chloroplasts and mitochondria, accompanied by the upregulation of only a very limited number of genes directly related to defense. As chitosan positively influences plant growth, yield, and resistance, we conclude that activation of electron transfer might result in the crosstalk of different organelles
<i>via</i>
redox signals to activate immune responses in preparation for pathogen attack, concomitantly resulting in a generally improved metabolic state, fostering plant growth and development. This conclusion is supported by the rapid and transient production of reactive oxygen species in a typical oxidative burst in the potato leaves upon chitosan treatment. This study furthers our knowledge on the mode of action of chitosan as a plant-protecting agent, as a prerequisite for improving its ability to replace or reduce the use of less environmentally friendly agro-chemicals.</AbstractText>
<CopyrightInformation>Copyright © 2020 Lemke, Moerschbacher and Singh.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lemke</LastName>
<ForeName>Philipp</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moerschbacher</LastName>
<ForeName>Bruno M</ForeName>
<Initials>BM</Initials>
<AffiliationInfo>
<Affiliation>Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Singh</LastName>
<ForeName>Ratna</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>08</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">RNAseq</Keyword>
<Keyword MajorTopicYN="N">chitosan</Keyword>
<Keyword MajorTopicYN="N">defense</Keyword>
<Keyword MajorTopicYN="N">photosynthesis</Keyword>
<Keyword MajorTopicYN="N">potato</Keyword>
<Keyword MajorTopicYN="N">transcriptome analysis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>9</Day>
<Hour>17</Hour>
<Minute>58</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32903855</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2020.01193</ArticleId>
<ArticleId IdType="pmc">PMC7438930</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Health Place. 2013 Mar;20:75-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23385030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1987 Jul;9(4):325-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24277085</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 May 13;5:188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24860580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2009 Apr;11(4):861-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19239350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Feb 24;8:235</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28286508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2002 Oct 29;357(1426):1395-404; discussion 1404-5, 1419-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12437878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2018 May 11;360(6389):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29748256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1993 Jun 15;193(2):554-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8390246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 May 9;92(10):4095-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Jun 25;10:800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31293607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 May 26;10(5):e0128041</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26010543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Food Microbiol. 2014 Aug 18;185:57-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24929684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 May 1;30(9):e36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11972351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2016 Apr 29;67:81-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26927905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Polym. 2019 Apr 15;210:289-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30732765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Sep;130(1):15-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2012 Jan 20;586(2):169-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22197103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D590-D595</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30321428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Apr;29(4):601-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28396552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2016 Oct;57(10):2020-2028</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27497446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2009 Mar;10(2):263-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19236574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Sep;32(9):1211-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19389052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2017 Sep 2;12(9):e1361076</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28805500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 May;21(5):507-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18393610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Sep 19;16:716</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26386579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Dec;118(4):1353-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Jun 08;8:956</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28642771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):11086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16829581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2016 Jul;171(3):1551-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27021189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2008 Dec;9(12):3411-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19053293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Apr 29;5:163</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24808901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Mar 26;16:246</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25880642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2018 Nov;31(11):1145-1153</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29787346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2011 Sep;124(5):619-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21240536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Jan 15;20(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30650540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(6):914-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mar Drugs. 2010 Mar 30;8(4):968-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20479963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2019 Feb;221(3):1649-1664</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30347449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 May 20;20(10):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31137463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(3):449-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16397003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jul 30;6:586</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26284102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2014 Jun;1837(6):835-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24530357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Jun 20;16:472</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26091899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Nov;56(421):2907-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16188960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2014 Jan 15;15(1):84-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24439900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D353-D361</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2002 Sep 1;3(5):301-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20569338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2018 Jul;122:171-180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29277443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2017 Mar 1;119(5):681-687</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28375427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pharm Biomed Anal. 2003 Aug 21;32(6):1149-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12907258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2015 Sep 08;10:48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26350041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Jun;6(6):864-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21558817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2012 Jun 18;13:134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22708584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2020 Jan 29;142(4):1975-1986</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31895979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2003 May-Jun;4(3):641-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12741780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Mar;17(3):957-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15705948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 May 1;29(9):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11328886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):29-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 May 18;6:26144</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27189192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Apr;138(4):430-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20028481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Jan 1;29(1):15-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23104886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(10):e26801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22046362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2016 Jun 23;17(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27347928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2019 May 21;(147):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31180345</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2006 Nov-Dec;44(11-12):910-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17092736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2018 Dec 19;19(1):534</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30567491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2003 Jun;52(3):537-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12956525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2014 Sep 20;21(9):1373-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24206122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10768-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21670306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Food Sci Nutr. 2016;56(5):711-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24925679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Jul;36(7):1242-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23305614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2009 Jan;4(1):66-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19704712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Oct 7;17(1):788</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27717312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jul 10;475(7355):189-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21743474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jun 03;7:760</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27375634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2017 Apr;211:138-146</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28199904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2017 Apr 28;68:485-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28226238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pest Manag Sci. 2005 Oct;61(10):951-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15999339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Jun;90(5):856-867</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27801967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Mar;146(3):818-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18316635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Feb 16;17(4):868-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9463365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Feb;128(2):760-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11842179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2001 Jun;52:561-591</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11337409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2017;1621:69-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28567644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2002;72(2):131-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16228513</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>District de Münster</li>
<li>Rhénanie-du-Nord-Westphalie</li>
</region>
<settlement>
<li>Münster</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Rhénanie-du-Nord-Westphalie">
<name sortKey="Lemke, Philipp" sort="Lemke, Philipp" uniqKey="Lemke P" first="Philipp" last="Lemke">Philipp Lemke</name>
</region>
<name sortKey="Moerschbacher, Bruno M" sort="Moerschbacher, Bruno M" uniqKey="Moerschbacher B" first="Bruno M" last="Moerschbacher">Bruno M. Moerschbacher</name>
<name sortKey="Singh, Ratna" sort="Singh, Ratna" uniqKey="Singh R" first="Ratna" last="Singh">Ratna Singh</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/MitoPlantRedoxV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000001 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000001 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    MitoPlantRedoxV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32903855
   |texte=   Transcriptome Analysis of Solanum Tuberosum Genotype RH89-039-16 in Response to Chitosan.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32903855" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a MitoPlantRedoxV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:18:52 2020. Site generation: Sat Nov 21 12:19:22 2020